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ABSTRACT: The properties of plasticoviscous media have been the 
subject of numerous studies, in particular [1-5]. This paper deals 
with the problem of plasticoviscons flow in the absence of a pressure 
drop of a medium with nonlinear viscosity in pure shear in a region 
wedge-shaped in plan, and with the problem of flow under the in- 
fluence of a pressure drop, when one face of the wedge moves paral- 
lel to the edge. 

1. We will consider the flow of an isotropic plasticoviscous me- 
dium with nonlinear viscosity between two infinitely long rigid cyl- 
inders (Fig. 1). The cross section of the contour of one of the cylin- 
ders S~ is wedge-shaped, the cross section of the second cylinder S~ 
takes the shape of a smooth closed curve asymptotically approaching 
the contour S~ at infinity. The two cylinders have parallel generators. 
The first cylinder is fixed, the second moves at a constant velocity 
u 0 parallel to the generators. 

Let the z axis be directed along the generators of the cylinders 
in the direction of motion of the second cylinder. We set Up the x 
and y axes in the plane of the cross section of the first cylinder. The 
velocity u(x, y) of each particle of the medium is directed along the 
z axis. 

The nonlinear relation between the shearing stress ~" and the shear 
rate y is taken in the form 

nv = (x -- ~)~ (~ > 0), (1.1) 

where k is the yield point, and % p the coefficient of viscosity and 
the viscosity exponent. Retaining the previous notation, we go over 
to dimensionless quantities. We refer the velocity u(x, y) to the quan- 
tity uo, the stress r to the yield point k, and quantities with the di- 
mension of length to the quantity k~/~. The Eq. (1.1) may be rewritten 
in the dimensionless form 

= ( ~ -  i p .  (1.2) 

Following the ideas of [2], we go from the plane xy to the orthog- 
onal network of coordinates u and v formed by the lines of equal ve- 
locity u = const and the lines of stresses v = const, to which the vector 

v is tangential. 
The equation for the function U(T, ~0) has the form 

T~ O~u 2T--xT' Ou O~u d~ 
"r' 0z' t- .f, ~ -t- " b - ~ = 0 ,  T ' = , ' ~ "  (1.3) 

The boundary conditions are 

u = 0  onS~, u - - - - ton  ~s, u = 0  at I x = l ' .  (1.4) 

The solution of Eq. (1.3) with boundary conditions (1.4) will be found 

in the form 

u = T(x) cos ),q). (1.5) 

Substituting (1.5) and (1.3) and satisfying the second of conditions 

(1.4), we obtain 

u (X, ~) = An (~ -- t) l+~ @ncos ;'n~, (I, 6) 

where X n are the eigenvalues of the problem, and @n(2 - a n, 2 - 
- Bn, 2 + g, 1 - I-) is a hypetgeometric function, 

~ =)/~ (t -- rt) -- p/ , ( t  -- tt)~+~l '/' . ( 1 . 7 )  

We denote by w the cone angle of the contour S r. If we set 

(2n + t) z~ 
~-- ;t--o ' ( 1 . 8 )  

then the solution (I. 6) will satisfy the first and second of boundary 

conditions (1.4). Summing the particular solutions (1.5), we obtain 

the general solution 

u = ~ A n ( ' ~ -  1) 1+1~ O n COS ~nqp . (1, 9) 

.y A ~ u : O  

Fig. 1 

We will use the third of conditions (1.4) as an equation for de- 
termining the moving contour S 2. 

Evaluating the derivatives Ox/0% Ox/0% Oy/Oep and Oy/O'~, we find 

x = : z  (z, ~ cp) = i An (Kn cos (p cos ~mcP + Ln sin r sin ~n(p), 

y~.y(~,q~)_.~ ~ An(Knsinc~cosXncp--Lneosq~sin)~nr (1,10) 

(i -- ~n) (i -- ~,) 

Ln = ~m [ Kn -}- (l - -  %')~n]" (1.11) 

Here An is an arbitrary constant, and @~(1 - a n, 1 - /3n, 1 +p ,  
1 - r) is a hypergeometric function. The equation for the contour 

of the rigid core x~(q), Yt(q) is obtained from (1.10) by setting 7 = 
= 1 in those expressions 

zl (~) = ~_~ A~Kn (t) (cos (p cos ~n(p -q- ~n sin q~ sin ),nqD), 

Yl (~) "~ ~ AnKn (t) (sin (p cos ~n(p - -  ~n cos ~ sin LnCp). (1.12) 
n = l  

The stress vector r is orthogonal to the contours S 1 and St; therefore 
on AB the angle q = - o r -  w)/2. K in (1,10) we set r = - 0 r  - w)/2, we 
obtain y = x tg w/2, i .e . ,  the equation of the line AB. Setting r = 
= (w - ~r)/2 and r = 1 in (1.10), we find the position of the point A at 
which the contour of the core and the line AB meet: 

03 
z =  2 ~nAnK"( i ) e~  ' Y = ~  XnAnKn(i) sin'-2- " (1.13) 

n~ l  ~ - 1  

At q = 0 from (1.12) we find the coordinates of the points of inter- 

section of the contour of the core and the x axis: 

z =  A n ~ t _  1 . 
n..~-i 

(L 14) 

Obviously, at q = - u r  - w)/2 from (1.12) we find the same values 
of the coordinates of the point A. To find the coordinates of the point 
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A from both (1. I0) and (I. 12) i t  is necessary to take the same value 
of the angle ~; therefore the contour of the core and the contour S 1 
meet smoothly at the point A, having a common tangent. This can 
also be seen by calculating the slope of the tangent at the point A to 
the line (1.12): 

~,n=(2n-b I), YA=0, xA= ~ A 
Xn(~ +___Jl) 

" )~n ~ -  1 (~ ~ 0), 

As the angle r increases to a straight angle, the Stagnant zone 
diminishes to zero. 

On the basis of (1.9) and (1.10) it is easy to see that at infinity al l  

the lines u = const asymptotically approach the contour S 1. 
2. We will now consider the flow of a plasticoviscous medium in 

a wedge under the action of a pressure drop P(r, (0) when one face is 
fixed and the other moves at a constant velocity u 0 parallel  to the 
edge. 

We will assume that the flow inside the wedge is described by the 
function u = u(~o). The shearing stress-shear relation is written in the 
form 

~= ~+ ~(v). (2. I) 

From the equilibrium equation 

1 0~ 
r 0,p - -  P (r, ~) ( 2 . 2 )  

and from (2.1) we find that in the case in question 

u ' 4 F  t ( t )  
P ( r , r  r~ d'~ ' T = ' - ~  u'' "r "-~'u' , (2.3) 

i . e . ,  as the apex of the wedge is approached the values of the shear 
rate and shearing stress depend on the direction of approach. 

We write the boundary conditions for the function u in the form 

At P(r, ~) from (2.3) and (2.4) we obtain 

u = ,puo/'(o, ( 2 . 5 )  

i. e. ,  particles of the medium on a ray drawn from the apex of the 
wedge move at different velocities. 

For the given P(r, ~0) from (2.3) and (2.4) we find u = u(~o). 
We calculate the force T applied to the part of the wedge face 

[0, r]:  

Since the force T is a finite quantity, integral (2.6) imposes a l imi ta-  
tion on the choice of F(y). Thus, at points where ], is large, the re- 
lation F(y) must be such that the force T is a finite quantity. 

If we take F(]0 -- rffm, then from (2.6) it is easy to see that the 
inequality m = 1 must be satisfied, i. e. ,  at points where y increases 

without bound, the viscosity cannot be linear. 
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